3.6.21 \(\int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [521]

Optimal. Leaf size=151 \[ \frac {\sqrt {a} (4 A+3 B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 d}+\frac {a B \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (4 A+3 B) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \]

[Out]

1/4*(4*A+3*B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+1
/2*a*B*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2)+1/4*a*(4*A+3*B)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a
*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3034, 4101, 3888, 3886, 221} \begin {gather*} \frac {a (4 A+3 B) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {\sqrt {a} (4 A+3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{4 d}+\frac {a B \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(Sqrt[a]*(4*A + 3*B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c +
d*x]])/(4*d) + (a*B*Sin[c + d*x])/(2*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) + (a*(4*A + 3*B)*Sin[c + d
*x])/(4*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3888

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*d*
Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[2*a*d*((n - 1)/(b*(2
*n - 1))), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a
^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 4101

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])
), x] + Dist[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1)), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^n, x], x]
/; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n
, 0] &&  !LtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx\\ &=\frac {a B \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{4} \left ((4 A+3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a B \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (4 A+3 B) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {1}{8} \left ((4 A+3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a B \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (4 A+3 B) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {\left ((4 A+3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}\\ &=\frac {\sqrt {a} (4 A+3 B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 d}+\frac {a B \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a (4 A+3 B) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.65, size = 106, normalized size = 0.70 \begin {gather*} \frac {\sqrt {\cos (c+d x)} \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sec (c+d x))} \left (\sqrt {2} (4 A+3 B) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sec (c+d x) (4 A+3 B+2 B \sec (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(Sqrt[Cos[c + d*x]]*Sec[(c + d*x)/2]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[2]*(4*A + 3*B)*ArcTanh[Sqrt[2]*Sin[(c +
d*x)/2]] + 2*Sec[c + d*x]*(4*A + 3*B + 2*B*Sec[c + d*x])*Sin[(c + d*x)/2]))/(8*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(341\) vs. \(2(127)=254\).
time = 12.50, size = 342, normalized size = 2.26

method result size
default \(-\frac {\left (-1+\cos \left (d x +c \right )\right ) \left (4 A \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}-4 A \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}+3 B \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}-3 B \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}+8 A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+6 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+4 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{8 d \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )^{2} \cos \left (d x +c \right )^{\frac {3}{2}}}\) \(342\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/8/d*(-1+cos(d*x+c))*(4*A*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*cos(d*x+c)
^2*2^(1/2)-4*A*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)-sin(d*x+c))*2^(1/2))*cos(d*x+c)^2*2^(1/2)+3*
B*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*cos(d*x+c)^2*2^(1/2)-3*B*arctan(1/4*
(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)-sin(d*x+c))*2^(1/2))*cos(d*x+c)^2*2^(1/2)+8*A*(-2/(1+cos(d*x+c)))^(1/2
)*sin(d*x+c)*cos(d*x+c)+6*B*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)+4*B*(-2/(1+cos(d*x+c)))^(1/2)*sin(
d*x+c))*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/(-2/(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^2/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 1927 vs. \(2 (127) = 254\).
time = 1.01, size = 1927, normalized size = 12.76 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

-1/16*(4*(4*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) - 4*sqrt(2)*cos(1/2*arctan2(
sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
+ 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 +
 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)
)) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c
), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c
), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*
d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan
2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*
arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)
*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*s
qrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) +
 2) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*cos(2*d
*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))))*A*sqrt(a)/(cos(2*d*x + 2*c)^2 + sin(2*d*x +
 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) + (12*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(7/2*arctan
2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin
(d*x + c), cos(d*x + c))) - 4*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(d*x
+ c), cos(d*x + c))) - 12*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(d*x + c)
, cos(d*x + c))) - 3*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2
+ sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*lo
g(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt
(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2)
 + 3*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*
c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arct
an2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arct
an2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 3*(2*(2*cos(2
*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d
*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c)
, cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c)
, cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + 3*(2*(2*cos(2*d*x + 2*c) + 1)
*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*
d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))
^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))
 - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 12*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(
2*d*x + 2*c) + sqrt(2))*sin(7/2*arctan2(sin(d*x + c), cos(d*x + c))) - 4*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)
*cos(2*d*x + 2*c) + sqrt(2))*sin(5/2*arctan2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*cos(4*d*x + 4*c) + 2*sq
rt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) + 12*(sqrt(2)*cos(4*d*x + 4*c)
+ 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))))*B*sqrt(a)/(2*(2*cos(2*d*
x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x
+ 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1))/d

________________________________________________________________________________________

Fricas [A]
time = 2.84, size = 401, normalized size = 2.66 \begin {gather*} \left [\frac {4 \, {\left ({\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + 2 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}, \frac {2 \, {\left ({\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + 2 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{8 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

[1/16*(4*((4*A + 3*B)*cos(d*x + c) + 2*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x +
 c) + ((4*A + 3*B)*cos(d*x + c)^3 + (4*A + 3*B)*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt
((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 +
8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2), 1/8*(2*((4*A + 3*B)*cos(d*x +
c) + 2*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + ((4*A + 3*B)*cos(d*x + c)^
3 + (4*A + 3*B)*cos(d*x + c)^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*
x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )}\right )}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))**(1/2)/cos(d*x+c)**(3/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x))/cos(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(a*sec(d*x + c) + a)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2))/cos(c + d*x)^(3/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2))/cos(c + d*x)^(3/2), x)

________________________________________________________________________________________